Bipartite Ranking: a Risk-Theoretic Perspective
نویسندگان
چکیده
We present a systematic study of the bipartite ranking problem, with the aim of explicating its connections to the class-probability estimation problem. Our study focuses on the properties of the statistical risk for bipartite ranking with general losses, which is closely related to a generalised notion of the area under the ROC curve: we establish alternate representations of this risk, relate the Bayes-optimal risk to a class of probability divergences, and characterise the set of Bayes-optimal scorers for the risk. We further study properties of a generalised class of bipartite risks, based on the p-norm push of Rudin (2009). Our analysis is based on the rich framework of proper losses, which are the central tool in the study of class-probability estimation. We show how this analytic tool makes transparent the generalisations of several existing results, such as the equivalence of the minimisers for four seemingly disparate risks from bipartite ranking and class-probability estimation. A novel practical implication of our analysis is the design of new families of losses for scenarios where accuracy at the head of ranked list is paramount, with comparable empirical performance to the p-norm push.
منابع مشابه
Bayes-Optimal Scorers for Bipartite Ranking
We address the following seemingly simple question: what is the Bayes-optimal scorer for a bipartite ranking risk? The answer to this question helps elucidate the relationship between bipartite ranking and other established learning problems. We show that the answer is non-trivial in general, but may be easily determined for certain special cases using the theory of proper losses. Our analysis ...
متن کاملBipartite ranking: risk, optimality, and equivalences
We present a systematic study of the bipartite ranking problem, with the aim of delineating its connections to the class-probability estimation problem. Our study focuses on the properties of the statistical risk for bipartite ranking, which is closely related to the area under the ROC curve: we establish alternate representations of the risk, relate the Bayes-optimal risk to a class of probabi...
متن کاملOn Theoretically Optimal Ranking Functions in Bipartite Ranking
This paper investigates the theoretical relation between loss criteria and the optimal ranking functions driven by the criteria in bipartite ranking. In particular, the relation between AUC maximization and minimization of ranking risk under a convex loss is examined. We characterize general conditions for ranking-calibrated loss functions in a pairwise approach, and show that the best ranking ...
متن کاملMinimax Learning Rates for Bipartite Ranking and Plug-in Rules
While it is now well-known in the standard binary classification setup, that, under suitable margin assumptions and complexity conditions on the regression function, fast or even super-fast rates (i.e. rates faster than n or even faster than n) can be achieved by plug-in classifiers, no result of this nature has been proved yet in the context of bipartite ranking, though akin to that of classif...
متن کاملConfidence-Weighted Bipartite Ranking
Bipartite ranking is a fundamental machine learning and data mining problem. It commonly concerns the maximization of the AUC metric. Recently, a number of studies have proposed online bipartite ranking algorithms to learn from massive streams of class-imbalanced data. These methods suggest both linear and kernel-based bipartite ranking algorithms based on first and second-order online learning...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 17 شماره
صفحات -
تاریخ انتشار 2016